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Abstract—A novel airborne thermal imaging technique is 

developed to map Land Surface Temperature (LST) with a high 

spatiotemporal resolution. A thermal camera is utilized as flown 

from a platform levitated by a tethered balloon. The developed 

method is suitable for near field observations with oblique view 

angles of the surrounding surface. In comparison to satellite 

observations, our approach results in less than 6% relative 

errors with a median relative error of 1.1% in predicting LST as 

compared to LST from images captured with the Moderate 

Resolution Imaging Spectroradiometer (MODIS). 
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I.  INTRODUCTION  

Unmanned Aerial Vehicles (UAVs) and other airborne 
imaging platforms have become commonly used tools for 
remote sensing [1]. A remote sensing parameter of significant 
interest for atmospheric modeling, meteorology, and 
climatology is the spatial distribution of Land Surface 
Temperature (LST) [2]. Sources of LST commonly include 
sensors located on satellites such as Landsat 8, which carries the 
Thermal Infrared Sensor (TIRS) and Terra1 and Aqua2 which 
carry the Moderate Resolution Imaging Spectroradiometer 
(MODIS) sensor [3]. However, satellite LST data can be missing 
due to a variety of factors including cloud cover and sensor 
failure [4]. Furthermore, high spatial resolution LST data from 
satellites, such as Landsat 83, is available at a low temporal 
resolution [5, 6]. Conversely, high temporal resolution LST data 
from satellite sensors, such as the Advanced Baseline Imager 
(ABI) on the Geostationary Operational Environmental 
Satellites R series of satellites (GOES-R)4, is available at a low 
spatial resolution [6]. That is, satellite-based sensors either offer 
high temporal – low spatial or low temporal – high spatial 
resolutions of LST. Recent advancements in both UAV and 
thermal imaging technologies have created opportunities for 
environmental LST to be accurately measured at a high 
spatiotemporal resolution. On-board UAV imaging systems, 
Global Positioning System (GPS) and Inertial Measurement 
Unit (IMU) data can be correlated to directly georeference image 
pixels to GPS coordinates without the use of Ground Control 
Points (GCPs) [7]. Coupling thermal imagery with common 
meteorological instruments to monitor environmental turbulent 
statistics on a UAV makes it possible to evaluate vertical heat 
fluxes among other meteorological data. Quantitative 
measurements of thermal imagery commonly utilize proprietary 

software packages including PhotoScan Professional [8, 9], 
Pix4Dmapper [10] and MATLAB. Open source thermal image 
processing software such as Thermimage was developed for 
thermal image analysis5. However, open source thermal image 
processing coupled with integrated direct georeferencing of 
pixels is not widely distributed.  

A Python based thermal image processing methodology was 
developed by the authors to calculate LST and to directly 
georeference images collected during a May 2018 field 
campaign for a remote northern mining location in Canada. The 
developed image processing methodology calculates 
georeferenced LST in decimal degrees of latitude and longitude. 
In this paper, we compare the results from the May 2018 
campaign with respect to MODIS daytime LST at 1-kilometer 
horizontal spatial resolution. Percent relative error of LST was 
calculated between the method and the median of the 
MOD11A16 data product, recorded on-board the Terra satellite, 
for each day from May 2018. The rest of the paper is organized 
as follows: Section II presents the data collection methodology 
and Python program development, Section III presents the LST 
results from the field campaign derived by the method and 
relative comparison to MODIS, Section IV discusses LST 
spatial patterns and relative errors of LST, and finally Section V 
concludes the paper.  

II. MATERIALS AND METHODS 

A. Field Campaign  

During May 2018, the Tethered And Navigated Air Blimp 2 
(TANAB2) completed multiple near surface profile 
measurements of the atmosphere. Thermal images were also 
collected using an uncooled FLIR Zenmuse XT 19-millimeter 
lens thermal camera. The camera was controlled by a DJI N3 
Flight Controller and a DJI Lightbridge2 from either an Android 
or iOS device attached to the Lightbridge2. Wind velocities in 
the x, y and z directions, air pressure, and air temperature were 
also recorded from an onboard TriSonica Mini Ultrasonic 
Anemometer at 10Hz. All these components were attached to an 
aluminum structure and frame referred to as the gondola of the 
TANAB2.  

One surface profile included the launching of the TANAB2 
from grade level and a controlled release of line attaching the 
blimp to a fixed location at the surface of the Earth. Depending 
on environmental wind conditions, multiple mooring lines can 
be used and controlled by personnel. Utilizing three mooring 
lines, the TANAB2 was deployed in conditions with a maximum 

1 https://terra.nasa.gov/about 
2 https://aqua.nasa.gov/ 
3 https://landsat.usgs.gov/what-are-band-designations-landsat-satellites 
4 https://www.goes-r.gov/spacesegment/abi.html 
5 https://github.com/gtatters/Thermimage  
6 https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table 
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wind speed of 10 meters per second.  During ascent, images were 
collected by utilizing the Android or iOS device in conjunction 
with the Lightbridge2 to pan the thermal camera vertically and 
horizontally. Images were recorded up to a maximum of 
approximately 150 meters above grade level. Between May 5, 
2018 and May 31, 2018, 11682 thermal images, each with a 
resolution of 640 pixels by 512 pixels were recorded.  

B. Methodology 

An image processing program utilizing Python, and 
associated open source image processing software, was 
developed on Ubuntu 16.04. Two additional open source 
software tools were used to extract information associated with 
the image metadata and camera signal values. These programs 
are ExifTool7 and ImageMagick respectively. Both programs 
were executed through the Linux terminal from the Python script 
and the outputs of each respective program were saved to 
variables in the Python program.  

ExifTool was used to extract physical camera constants and 
image specific information. Data recorded by the integrated GPS 
and IMU in the DJI N3 flight controller was saved in the 
metadata of each image. ExifTool uses image tags to extract 
data. The tags vary by the manufacturer of the camera. Image 
specific information extracted from each picture included the 
latitude and longitude of the gondola when the image was 
recorded, the camera gimbal roll degree, the camera gimbal yaw 
degree, the camera gimbal pitch degree, the gondola roll degree, 
the gondola pitch degree and the altitude of the gondola. The raw 
signal recorded by individual pixels were extracted through 
using both ExifTool and ImageMagick. ImageMagick specified 
individual pixels to be extracted from the raw signal data while 
the ExifTool extracted the raw thermal pixel data.  

All images have a gimbal pitch angle greater than -2° and 
less than or equal to -76°, where the horizontal plane is assumed 
to be zero degrees with positive angles upward. The gimbal pitch 
represents the angle for the center of an image. As per 
manufacturer specifications, the camera’s mechanical pitch 
range is 45° and -135°. Images with a gimbal pixel angle greater 
than -30° may introduce error to the LST calculation8. Many 
images were recorded with oblique gimbal pitch angles between 
-2° and -30°. Excluding images within this range would have 
significantly reduced the spatial distribution of LST, such that 
spatial temperature gradients within the mining facility would 
have been omitted. Any top image pixels with a pitch angle 
greater than -1° at the top of each image (gimbal pitch angle plus 
half of the vertical field of view (VFOV) (26°)) were 
disregarded. This filtering was needed so that only pixels 
pointing to the land surface are included in the LST calculations. 
With this assumption, the pixel row for the top of each image 
was calculated through a mathematical relationship discussed 
below and visualized in Fig. 1 and Fig. 2. Images with a pitch 
angle of less than -76° were omitted for georeferencing 
simplicity as the pitch angle for the bottom of each image would 
be equivalent to less than -90° otherwise. 

The altitude of the TANAB2 gondola (camera) was 
calculated through deriving a mathematical relationship between 
the atmospheric pressures recorded by the TriSonica relative to 
the atmospheric pressure at the start of each launch. The land 

surface elevations in the eight cardinal directions (north, north-
east, east, south-east, south, south-west, west and north-west) 10 
kilometers away from each TANAB2 launch location were 
determined with the Geocontext-Profiler9 and exported to 
separate text files. In Python, a polynomial was fitted to the 
elevation data for each direction. A linear relationship 
representing the line of sight for the center of the camera was 
derived. The intersection(s) of these two equations was 
calculated and the smallest real positive solution was used as the 
surface level elevation and horizontal distance away from the 
TANAB2.  

The geographic coordinates for the top, center, and bottom 
midpoints as well as corners of each image were calculated 
through a variation of the Haversine formula as per Equations 1 
and 2.   

 𝐿𝑎𝑡2 = arcsin[sin(𝐿𝑎𝑡1) cos (
𝐻𝐷𝑖𝑠𝑡

𝑅
) +

cos(𝐿𝑎𝑡1) sin(
𝐻𝐷𝑖𝑠𝑡

𝑅
) cos(𝑌𝑎𝑤)]  

 

(1) 

 𝐿𝑜𝑛2 = 𝐿𝑜𝑛1 +

𝑎𝑡𝑎𝑛2[sin(𝑌𝑎𝑤) sin(
𝐻𝐷𝑖𝑠𝑡

𝑅
) cos(𝐿𝑎𝑡1),

cos(
𝐻𝐷𝑖𝑠𝑡

𝑅
)— sin(𝐿𝑎𝑡1) sin(𝐿𝑎𝑡2)]  

(2) 

 

Where Lat2 and Lon2 represent the calculated geographic 
coordinates, Lat1 and Lon1 represent the geographic coordinates 
recorded by the N3 when each image was captured (i.e. 
gondola’s GPS coordinates), HDist represents the surface level 
horizontal distance away from the TANAB2, R represents the 
equatorial radius of the Earth in kilometers10 and Yaw represents 
the heading of the camera gimbal in degrees from north positive 
clockwise. All angles and geographic coordinates were 
converted to radians before calculating the new geographic 
coordinates. When deriving the geographic coordinates for 
pixels on the edges of the images, the horizontal distance away 
from the TANAB2 was determined through considering half of 
the horizontal field of view (HFOV) (32°) with the known 
horizontal distance away for the top, center and bottom of each 
image, respectively. Using simple trigonometric relationships, 
the HDist was determined. If geographic coordinates of pixels in 
the middle of the image were to be calculated, the HDistVertical 
was required. Conversely, if geographic coordinates of pixels on 
either the left or right edges of each image were to be calculated, 
the HDistEdge was required. To calculate the geographic location 
of pixels within the image, a relation between geographic 
distance and image pixels was identified.  

A mathematical relationship was derived to determine the 
new top pixel row and the geographic distance away from the 
TANAB2 with respect to image pixels. This relation is 
illustrated in Figs. 1 and 2. Angles based on the vertical and 
horizontal fields of view properties of the camera are used to 
georeference nine locations for each image recorded including 
the corners and midpoints for the top, center and bottom of each 
image, respectively.  

7 http://u88.n24.queensu.ca/exiftool/forum/index.php?topic=7116.0 
8 https://dl.djicdn.com/downloads/zenmuse_xt/en/ 
sUAS_Radiometry_Technical_Note.pdf 
9 http://www.geocontext.org/publ/2010/04/profiler/en/ 
10 https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html 

http://u88.n24.queensu.ca/exiftool/forum/index.php?topic=7116.0
http://www.geocontext.org/publ/2010/04/profiler/en/
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Figure 1. Relation between image pixels and horizontal distances. 

Where Yb, Yc, Ytx and Yt represent the horizontal distance away 

from the TANAB2 for the bottom, center, new top and top of 

each image; P0, Px, P256 and P512 represent the top pixel row, 

the new top pixel row, the center pixel row, and the bottom pixel 

row for each image, 13° is half of the VFOV, θ represents the 

pitch angle, γ and β represent angles used in equations that 

follow to correlate pixels to distances. The red triangle in Fig. 1 

is displayed in more detail in Fig. 2.  

 

Figure 2. Relationship between VFOV and image pixels. 

Where X represents the number of pixel rows omitted between 

the top of the image and another pixel row which itself is a 

function of the newly assigned top pitch angle. A geometric 

step function was used to determine the pixel steps for each 

row, where the majority of the pixel rows were located at the 

top of each image. In addition, every 64th pixel across each 

column was selected and a corresponding geographic 

coordinate pair was calculated for each pixel column and row 

pair. At most each image would yield a maximum of 80 

coordinate pairs. Most images yielded less as many images 

were assigned a new top pixel row. This pixel row (X) was 

calculated as a function of angles γ, β, κ and η as represented 

in the equations below  

 

 𝛾𝐷𝑖𝑠𝑡−𝑃𝑖𝑥 = arctan(
𝐻𝐷𝑖𝑠𝑡𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙

𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒
), (3) 

  

𝛽𝐷𝑖𝑠𝑡−𝑃𝑖𝑥 = 90°—abs(𝐺𝑖𝑚𝑏𝑎𝑙𝑃𝑖𝑡𝑐ℎ) + 0.5 ∙
𝑉𝐹𝑂𝑉—𝛾𝐷𝑖𝑠𝑡−𝑃𝑖𝑥,  

 

(4) 

  

𝜅 = 90°—0.5 ∙ 𝑉𝐹𝑂𝑉, 

 

(5) 

 

 𝜂 = 90°—0.5 ∙ 𝑉𝐹𝑂𝑉 +
𝛽𝐷𝑖𝑠𝑡−𝑃𝑖𝑥,  

(6) 

 

 𝑋𝐷𝑖𝑠𝑡−𝑃𝑖𝑥 =
[0.5∙𝑉𝑃𝑅∙sin(𝛽)]

[sin(𝑉𝐹𝑂𝑉∙0.5)∙sin(180°—η)]
,  (7) 

 

where VPR is the Vertical Pixel Range and is 512 as per the 

camera specifications. For coordinates on the left and right 

edges of each image, the HDistEdge from the TANAB2 was 

calculated using Eq. 8  

 

 
𝐻𝐷𝑖𝑠𝑡𝐸𝑑𝑔𝑒,𝐷𝑖𝑠𝑡−𝑃𝑖𝑥 =

𝐻𝐷𝑖𝑠𝑡𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙
cos(0.5 ∙ 𝐻𝐹𝑂𝑉)

 
 

(8) 

 
Using the same relationship as illustrated in Figs. 1 and 2, a 

set of equations were derived to relate numerical pixel locations 
to geographic distances. The relations described below were 
used when iterating through the pixel coordinates of an image. 
Rearranging Eq. 9, βPix-Dist was solved for as shown in Eq. 10 

 

 sin(0.5∙𝑉𝐹𝑂𝑉)

sin(𝜅)∙[0.5∙𝑉𝑃𝑅]
=

sin(0.5∙𝑉𝐹𝑂𝑉—𝛽𝑃𝑖𝑥−𝐷𝑖𝑠𝑡)

sin(𝜂)∙[0.5∙𝑉𝑃𝑅—𝑗]
,  (9) 

 

 𝛽𝑃𝑖𝑥−𝐷𝑖𝑠𝑡 = −𝑎𝑟𝑐𝑡𝑎𝑛 (
[0.5∙𝑉𝑃𝑅—𝑗]∙sin(0.5∙𝑉𝐹𝑂𝑉)

0.5∙𝑉𝑃𝑅∙sin(𝜅)
) +

0.5 ∙ 𝑉𝐹𝑂𝑉,  

(10) 

 

 𝛾𝑃𝑖𝑥−𝐷𝑖𝑠𝑡 = 90°—abs(𝐺𝑖𝑚𝑏𝑎𝑙𝑃𝑖𝑡𝑐ℎ) +
0.5 ∙ VFOV—𝛽𝑃𝑖𝑥−𝐷𝑖𝑠𝑡,  

(11) 

 

 𝑆𝑙𝑜𝑝𝑒𝑃𝑖𝑥−𝐷𝑖𝑠𝑡 =
−1

tan(𝛾𝑃𝑖𝑥−𝐷𝑖𝑠𝑡)
,  (12) 

 

where j represents the vertical pixel row and SlopePix-Dist 

represents the slope for the line of sight from the camera for 

each corresponding pixel location. The horizontal distance is 

derived using the same method described before using the data 

from Geocontext-Profiler. If georeferencing pixels between the 

edge and the center of an image, an angular offset based on the 

HFOV must be used when calculating the horizontal distance. 

This angular offset is directly related to the location of the pixel 

column with respect to the center of the image. Equations 1 and 

2 were used to calculate the geographic coordinates for each 

pixel in an image. The angular offset was added or subtracted 

to the Yaw value depending on the location of the pixel column.  

 
Using the raw signal value extracted from each pixel with 

ExifTool and ImageMagick in conjunction with heat transfer 
formulas based on Planck’s Law, the LST was calculated. 
Martiny et al. [11] developed a partially empirical relationship 
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between Planck’s Law (as described by Çengel and Ghajar [12] 
in Eq. 13) and the infrared pixel value recorded by a thermal 
camera (Eq. 14) 

 𝐸𝑏𝜆 =
𝐶1

𝜆5∙[exp(
𝐶2
𝜆𝑇

)—1]
,  (13) 

 

 𝐼 =
𝑅

exp(
𝐵

𝑇
)—1

, (14) 

   

where Ebλ represents the emissive radiative power for a spectral 

black body, λ represents the wavelength of radiation released by 

the black body, T represents the surface temperature of the black 

body and C1 and C2 represent constants [12]. In Eq. 14, I 

represents the thermal radiation emitted from the imaged 

surface and T represents the temperature of the imaged surface. 

The remaining parameters represent constants which are 

directly influenced by the thermal camera and are determined 

during the calibration process by the camera manufacturer [11]. 
 

The total radiative energy recorded by a thermal camera as 
described by Usamentiaga et al. [13] and FLIR Systems [14] is 
a function of three radiative energy sources as per Eq. 15  

 𝑈𝑡𝑜𝑡 = 𝜀𝜏𝑈𝑜𝑏𝑗 + (1—𝜀)𝜏𝑈𝑟𝑒𝑓𝑙 + (1—𝜏)𝑈𝑎𝑡𝑚,  (15) 

 

where Utot represents the total radiative energy recorded by a 

thermal camera, ε represents the emissivity of the imaged 

surface, τ represents the transmissivity of the atmosphere 

between the surface and the camera, Uobj represents the fraction 

of radiative energy emitted from the imaged surface, Urefl 

represents the theoretical fraction of radiative energy that is 

reflected from the imaged object based on an assumed reflective 

temperature and Uatm represents the radiative energy 

theoretically emitted from the atmosphere based on an assumed 

atmospheric temperature [14]. Usamentiagia et al. [13] noted 

that the transmissivity of the atmosphere is usually close to one, 

as a result, the atmospheric transmissivity was assumed to be 

equivalent to one. From the camera manufacturer, the apparent 

reflective temperature used to calculate the Urefl was 295.15 K. 

The Urefl term was calculated using the following equation 

 

 𝑈𝑟𝑒𝑓𝑙 =
𝑅1

𝑅2∙[exp(
𝐵

𝑇𝑟𝑒𝑓𝑙
)—𝐹]

− 𝑂, (16) 

 

where R1, R2, B, F and O are all constants determined by the 

camera manufacturer. These constants in addition to the 

apparent reflective temperature were extracted from the 

metadata of each image with ExifTool.  

 
The emissivity of the land surface was derived from a remote 

sensing satellite. MODIS imaged the land surface twice daily 
over the entire field campaign. Using the MOD11B311 data 
product, recorded from the Terra satellite, the average land 
surface emissivity at a spatial resolution of 6 kilometers for three 
specific spectral ranges over the entire study area was calculated. 
Wang et al. [15] developed a relationship to determine the 
Broadband Emissivity (BBE) as a function of the three spectral 

bands recorded by MODIS. The BBE relation (Eq. 17) was used 
to calculate the land surface temperature from the thermal 
images.   

 𝐵𝐵𝐸 = 𝑎𝜀29 + 𝑏𝜀31 + 𝑐𝜀32,  (17) 

 

where ε29, ε31 and ε32 are the spectral emissivity bands from 

MODIS (Bands 29, 31 and 32, respectively) and a, b and c are 

constants determined to be acceptable for soil, vegetation and 

anthropogenic land surfaces [15].  

 
The radiative energy signal from the imaged object recorded 

by the thermal camera was calculated using Eq. 18 and the 
corresponding object surface temperature was calculated with 
Eq. 19  

 
𝑈𝑜𝑏𝑗 =

𝑈𝑡𝑜𝑡—[(1—ε)𝑈𝑟𝑒𝑓𝑙]

𝜀
,  

(18) 

   

 𝑇𝑜𝑏𝑗 =
𝐵

ln[
𝑅1

𝑅2∙(𝑈𝑜𝑏𝑗+𝑂)
+𝐹]

, (19) 

 

where ε is the BBE of a specific geographic location and Tobj is 

the LST of a specific geographic location.  

III. RESULTS 

The median LST values from the entire field campaign were 
calculated at a spatial resolution of 1-kilometer for six four-hour 
intervals in Local Daylight Time (e.g. 00:00-04:00 LDT, 04:00-
08:00 LDT, 08:00-12:00 LDT, 12:00-16:00 LDT, 16:00-20:00 
LDT, 20:00-24:00 LDT). Spatial distribution of LST with 
respect to important land surface features are included below. 
Geographically important land features include the perimeter of 
the facility (black), the perimeter of a tailings pond (blue), the 
perimeter of a mine (red), and the TANAB2 launch locations 
(white dots in Figs. 3 and 5). The temperature distribution of 
LST of both the tailings pond and mine for the corresponding 
four-hour intervals are represented as boxplots in Fig. 4.  

A comparison of the median LST at 1-kilometer spatial 
resolution collected during May 24th was also completed with 
MODIS LST data from the MOD11A1 data product. The 
TANAB2 was deployed within the mine perimeter on this day, 
as denoted by the white dot within the mine perimeter in Fig. 5. 
The spatial distribution of percentage relative error between the 
two methods with respect to key land features is also presented.   

IV. DISCUSSION 

The spatial distribution and variation of LST varies diurnally 

as shown in Figs. 3 and 4. In general, the mine and areas around 

the mine are warmer as compared to other areas of the mining 

facility. The spatial distribution of LST within the mine and 

pond varies the least between 04:00 and 08:00 LDT. Between 

00:00 and 04:00 there is a noted temperature gradient between 

the pond and the mine. This gradient is apparent for all other 

time periods except for the 04:00 to 08:00 LDT time period.  

 

 

 

11 https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11b3_v006 
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The LST derived from images recorded from the May 24th, 

2018 field campaign compared well with the MODIS LST as 

shown in Fig. 5. LST in and around the mine appear to have a 

percentage error of approximately 6% or less. Furthermore, the 

overall median relative error was determined to be 1.1%. Areas 

west and north-west of the mine have a higher percentage error 

which may be attributed to higher surface elevations as 

compared to the mine itself and areas east of the mine. 

Temperatures at these pixels require very oblique view angles, 

i.e. pitch angles closer to the horizontal, therefore reduced 

accuracy due to solar reflection and a thick atmospheric 

boundary layer, through which the image quality may be 

disrupted. 

 

Figure 3. Median temperatures at 00:00 – 04:00 LDT (top left), 04:00-08:00 LDT (top right), 08:00-12:00 LDT (middle left), 12:00-16:00 LDT (middle right), 

16:00-20:00 LDT (bottom left), 20:00-24:00 LDT (bottom right); at 1-km by 1-km horizontal spatial resolution. 
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Figure 4. Boxplot of temperatures at 00:00-04:00 LDT (top left), 04:00-08:00 LDT (top right), 08:00-12:00 LDT (middle left), 12:00-16:00 LDT (middle right), 

16:00-20:00 (bottom left), 20:00-24:00 LDT (bottom right); for tailings pond and mine. 
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Figure 5. Median temperatures from May 24, 2018 12:00-14:00 LDT 
recorded from images captured by the thermal camera (top), daytime 

temperatures from the early afternoon on May 24, 2018 derived from the 

MODIS MOD11A1 data product (middle), percentage error between thermal 

camera and MODIS LST on May 24 (bottom). 

 

In total, 98% of the total 11 682 images were processed with 

the method and LST from individual pixels were calculated. 

The number of images or pixels within an image processed with 

the method can be changed depending on the data set size and 

preferences of the user. The size of the image data set is much 

larger than any singular satellite image from Landsat 8 or 

GOES. However, with an image dataset, parameters within the 

methodology, can be adjusted to spatially represent LST with a 

very high spatial resolution over any specified time period. 

Using satellite image datasets, these advantages cannot be 

realized due to inherent limitations of satellite sensors. 

V. CONCLUSION 

A novel airborne thermal imaging technique is developed to 
measure Land Surface Temperature (LST) with a high 
spatiotemporal resolution. A thermal camera is deployed on a 
tethered balloon in a remote mine field in northern Canada in 
May 2018. The terrain variability and camera’s GPS position, 
altitude, pitch, and yaw angles were used to georeference each 
recorded pixel in the thermal image by tagging a latitude and 
longitude to it. The developed method was suitable for near field 
observations with moderately oblique view angles of the 
surrounding surface. In comparison to MODIS satellite 
observations, our method results in less than 6% relative errors 
in predicting LST close to the launch. This error increases with 
pitch angles closer to the horizontal. Our approach provides high 
spatial and temporal resolution of LST measurements 
simultaneously and therefore overcome limitations of satellites 
that cannot achieve both high spatial and temporal resolutions at 
the same time. 
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